
A report to the Joint Information Systems Committee regarding

Nature Publishing Group's Project “ROSA”.

by Ben Hammersley

An introduction for the shorter attention span.

Ok, so the top line: it's good. It's very good. It is, and this is not putting it lightly, quite
possibly a milestone in its class. In funding this project, you not only got your money's
worth, but also changed the world a little. Only a nudge here and a prod there, for sure,
but a change nonetheless, and a change for good.

So, to summarise again: it's good. Nice one. In the rest of this report, we'll look into why
it's good, and what you can do to make it even, as they say, shinier. But for now, relax,
sip that coffee, slip off your shoes, and settle down into your chair. It is not every day you
change the world, is it?

Quite.

Now, a word about this report. The first section will address what the Nature Publishing
Group actually did: their achievements against their promises, and how they did what
they did. That will necessitate some technical talk - for which I apologise - but this jargon
can be safely ignored if it means nothing to you. Skip over it: feel free to bail out of
paragraphs a few lines too early if the acronyms get out of hand. I know I do.

The second section addresses the future options for the project. This too might have
jargon, but will explain such as it goes along. The more racy and daring of you might
skip straight to this section, chequebook at the ready, and eager in your quest to make the
world a better place. Either way, the conclusion of this report can be summed up thus:

Excellent so far, full of potential, give them more money.

So, firstly, some explanations…

Just who is this guy to tell us these things?

Firstly, I quite literally wrote the book on RSS: "Content Syndication with RSS",
(O'Reilly and Associates, 2003), the key text in the field. I'm a member of the RSS 1.0
Working Group, the body entrusted with the upkeep of the standard, and have authored
three major RSS module standards, including the Creative Commons module, and the
Streaming Media vocabulary. I lectured at this year's Emerging Technologies conference
in Santa Clara on the representation of message threading in RDF, and have contributed
code to many of the major RSS packages. I am the master. Fear me.

Secondly, I'm a national newspaper technology journalist. I write for The Times, where I
was internet correspondent during the dotcom boom, and for The Guardian. I specialise
in the social effects of cutting edge technology. This is cutting edge social-software, so
it's my speciality from an end-user point of view. I'm also available for parties.

and what are all these funny words?

A short glossary for the more socially adept in our midst.

RDF - Resouce Description Framework, a data format that provides a sematically
complete way of expressing metadata.

FOAF - Friend of a Friend, an RDF vocabulary that allows you to describe people, and
more specifically, their social relationships.

CPAN - the Comprehensive Perl Archive Network, a repository of Perl modules on the
internet. Beyond useful.

Regexp - Regular Expressions, a way of expressing pattern matching criteria. Completely
obscure to read without years of tortuous study, but a key tool in the Perl coder's bag.

Parse::RecDescent - the Perl module used within Urchin to define their search language.
Fancy pants stuff, really.

Non-root users - users of a Unix system without sufficient privileges to control the entire
machine. This is usually everyone but the system administrator (who has 'root' access).

input_type - a term internal to the codebase in question: what form the original data came
in.

skipHours/skipDay/syndication - many RSS feeds contain these optional data elements
that denote when, and how often, the feed should be queried. It's polite to follow the
instructions, but few people do. The bounders.

rdfs:seeAlso - an optional element within RDF that basically means 'Look! More data
here!' and provides a URL to some more RDF. It's especially common in FOAF files.

Project Overview, or did they do what they said they would?

The Project offered ten criteria against which it could be judged. Obviously, the
temptation here is to choose criteria that are easy to reach, even if the project as a whole
does not actually work. In this case, however, I think NPG did a good job in spacing out
their milestones along the entire product development journey. They're just too damn
honest, I guess.

1. “A relational database schema for caching news feed information. This would include
fields for holding not only straightforward RSS metadata (titles, links and descriptions)
but also Dublin Core and Open Content Syndication metadata, thus allowing the feeds
generated by ROSA to be extended beyond the limits of RSS.”

They say: delivered.

I say: agreed. The schema, reproduced within their report, is nicely done, at least to my
eyes. Admittedly, I usually shun database schema like the dogs they are - finding them
very very dull - but even to my jaded and slightly fearful brain, this one is good. It's
certainly complete enough for the purpose.

2. “General-purpose software modules written in Perl for retrieving data from the
following types of sources and inserting them into the database described above: RSS
feeds, Relational databases, XML, Arbitrary structured and semi-structured text files."

They say: delivered.

I say: not quite, but well enough. The Urchin::Import modules are very well done, and
will certainly have a life of their own outside of the complete aggregator project. I can
certainly see myself using Urchin::Import::Scrape, for example, to provide a single feed
from a web page that does not ordinarily provide one for my own personal use.

However, Urchin::Import::XML does not appear to be complete, or, in fact, in existence
at all bar some place holders. The authors do not deny this: Ben Lund tells me that it is
planned for completion soon. No matter, in my opinion: grabbing RSS-ish data from
arbitrary XML sources is a nice feature to have, but the set-up time for
Urchin::Import::XML for the end user could just as easily be spent writing some XSLT
code, or a nice bit of XML::Simple code, or some Xpath stuff, or whatever to do the same
job, and then use the existing modules. That this would have to be done for each different
XML source anyway is rather to the point here. Indeed, apart from all the angle brackets,
you could do just as well with the Urchin::Import::Scrape module. There is, as they say,
more than one way.

3. “A relational database schema for storing a list of information sources, whether local
or Internet-based, and providing data in any of the formats listed”

They say: delivered.

I say: agreed. And they're cheating on this one. Because the data describing the
information sources cannot really be separated from the data that those sources provide,
the success of point 1 pretty much presupposes success here, and vice versa.

This is, to me, a very good sign. It shows that the designers appreciate the fundamental
nature of the data they are working with: that the details of the source of a piece of data is
'just another triple' - and that once the triples have been added into the database, there is
no hierarchy to the information. In fact, holding source information in a separate database
would have been completely detrimental to the extensibility of the project. We'll get on to
that in my next section.

4. “A master control program for reading the list of sources from the above database and
polling them for new content using the relevant software modules already described.

They say: delivered.

I say: delivered. I'm a bit grudging with this one. Sure, urchinadm does trigger the polling
of the sources in the database, and does allow for new feeds to be added, but that's it. I'd
like to see a lot more functionality here. I'll go into this in the next section.

5. “A database schema for holding feed aggregation information … and a software
module for creating aggregate feeds based on this information.”

and

6. “A database schema for holding feed filtering … Also, a software module for applying
these filters to single or aggregate feeds, individually or in series. Note that for advanced
users, this filtering will allow the use of regular expressions as well as simple text
matches.”

They say: delivered.

I say: agreed. The schema we could go on about all day, but we already know it's good.
The Urchin::OutputFeed module is very nice. I'll talk later about the coding style, but this
is very clear stuff.

7. “A database schema for holding arbitrary combinations of aggregators and filters to
create custom news feeds, whether defined by the administrator or by users. Also, a
software module for taking aggregated, filtered output and delivering it in a variety of
formats. These would include RSS 0.9, 0.91, 0.92 and 1.0; Meerkat XML and user-
defined XML formats; JavaScript; and arbitrary HTML or other user-defined text
formats.”

 They say: delivered.

I say: agreed. Nice. I'm a fan of these two modules, especially
Urchin::OutputFeed::XSLT, whose $serve_flag option is especially nifty. I agree with the
author's judgement that some work could be done to provide example XSL files, and I
would like some HTML::Template examples as well, but all in all, it's just great. There's
a lot of potential here for exporting FOAF, for example.

8. “Documentation detailing the installation, configuration, administration and use of
ROSA.”

They say: delivered.

I say: no. Well, I'm being very harsh here, given that no version 0.81 project is likely to
be completely documented, but having realized that I've agreed with everything the
authors have said so far I'm feeling mildly embarrassed and need to show some venom.
So: I'd have liked to see more here with regards to customization of the outputs. But other
than that, the other documentation is good, especially the installation guide. In the next
section of this report I talk about coding style and the internal documentation, but suffice
to say, it's all pretty good. Boring already, right?

9. “Installation packages for the software in appropriate formats, such as 'make' and
'rpm'.”

They say: partially delivered.

I say: give yourself a break, lads. The authors judge themselves to have only partially
delivered on this point as they did not include an RPM package with the more usual
'make' build. I'd have never expected an RPM package for this sort of thing. An OS X
installer, perhaps, but an RPM? No. Why? Partly because of the heavy configuring
needed (which in the case of OS X would be taken care of with some form of beautiful
UI), but mostly because I would say that this project is just as likely to be used for its
parts as its sum. Tying everything up in an RPM would have been quite annoying.
Having the main perl module specifically denote all the system's prerequisites would
suffice, I think - leave it all to CPAN to worry about.

10. “The source code of all of the above, including Perl scripts (using Perl version 5.6)
and SQL database schemas (in at least MySQL and Oracle versions.)”

They say: partially delivered.

I say: agreed, but no worries. Again, here's the thing with the lack of an Oracle database.
I'm not too bothered about this: MySQL is perfectly good, and perfectly cheap enough
(i.e. free in many cases) to be a viable option. Oracle is good, but is expensive: I'm not
convinced that they lack of Oracle specific code is a show-stopper in any way.

A note on the architecture choices and coding style

One of the more difficult decisions to make regarding a project such as this is which
platform to code upon. The choices are not simple: code a desktop system for Windows,
and you will likely have more users, but will be hampered by massively greater costs and
a difficulty in sharing your work. Code a web-based system, and you will need a server
infrastructure. Code for Mac, and it will look beautiful, and will gain an almost religious
following amidst its users - but they will number only a handful.

Language is also an issue, as is database compatibility and so on. NPG's choice of the
LAMP platform - Linux, Apache, MySQL, Perl - is very much a fashionable one, but
none the worse for that. All of these systems are available for zero cost for personal use -
and only MySQL requires a license for commercial use. This brings the cost of both
development and deployment down to easily manageable levels.

The use of Perl is also to be applauded and encouraged in other JISC funded projects of
this sort. Perl (and the other 'scripting' languages, such as Python and PHP) is an
'interpreted' language, rather than a compiled one. This means that the raw source code is
run through an 'interpreter' every time you use it, as opposed to running it once through a
compiler and then shipping the compiled code. Shipping only source code allows others
to work on and learn from the product, but also makes the development process faster.

This is all to the good.

Kudos is also due to Martin Flack, the coder from NeoReality responsible for many of the
Perl modules. It is a common complaint against many Open Source projects that the code
is both obscure and poorly documented. This is not the case with the Urchin:: modules.
The code immediately strikes one as having been written by someone who knows what
they're doing - it's beautifully laid out, shows good style, and is properly documented
within each module. This is totally irrelevant to the end-user, of course, but makes the
jobs of other developers much easier. The Urchin::Import:: modules, for example, could
have many uses independent of the entire Urchin system - that they are documented so
well makes it all the more likely that this further value will be unleashed. It was
somewhat of a joy to see.

Comments on "Features that Urchin 0.8 should have, but currently doesn't"

1. Full HTTP compliance - Use the If-Modified-Since -Respect 304 not modified
responses - Essential. Many of the more highly trafficked sites are being
hammered by RSS applications. Slashdot.org, for example, is so affected that it
regularly bans IP addresses for too frequently requesting feeds. Full HTTP 1.1
compliance ensures that the the feed is only requested when it has changed,
making Urchin more efficient and far more friendly.

2. Richer scraping capabilities - Not so essential in my opinion. The scraping
capabilities currently on offer cover at least 90% of all possible cases. For 0.9 and
1.0, it would be a better use of resources to work on feature request number 3,
coming up:

3. Full reconstruction of all RDF data for RSS 1.0 outputs - Yes. Yes. Yes.
Essential. This is tremendously important for the future of the use of metadata in
the fields Urchin is aimed at. Ideally, I should be able to create my own RDF
namespace, include it in data, and then be able to query for it on Urchin without
having told the authors of its existence. Note that being able to query for it does
not necessarily mean that it is included in the resultant output - that would be
ideal, but much harder to implement given the difficulties in creating RSS 1.0.

4. Richer Urchin metadata in the RSS 1.0 output - That would be nice.
5. Use urchin:aggregate to give the names of Urchin aggregates that an item's

parent channel are be part of - Interesting idea, but I'm worried that two
different Urchin installations might clash. For example, I could know that NPG is
running an Urchin installation and scraping my feed. I want my feed to appear in
their category 'Florentine Information Scientists', so I add an urchin:aggregate
element to my feed. Then along comes another Urchin installation, wherein I wish
to be categorized as 'English Émigrés' and not under Florentine Information
Scientists at all - how do I mark this up? Thought needed here, and perhaps some
work with other aggregator authors.

6. Routines to stop an Urchin installation importing data from itself - Agreed.
7. Deal with encoded HTML in titles and descriptions - My own personal view is

that encoded HTML in titles or descriptions (as apart from content:encoded
elements) is that the authors of such feeds will be first up against the wall come
the revolution. Still, a few lines of regexp would fix this.

8. Ability to import own Parse::RecDescent vocabulary - Agreed. Sharing new
vocabulary items with other users would be great.

9. Port to Oracle - Not worth the time, in my opinion.
10. Installation guidelines for non-root users - Agreed
11. SaveData.pm save input_type - Agreed
12. urchinadm to skip non-RSS channels - I'd amend this to 'skip non-RSS and

non-RDF channels' and include the ability to parse RDF triples in non-RSS form.
13. Generate a query/slow log - Agreed
14. Insert skipHours/skipDay/syndication metadata into RSS output - Agreed.

Although no one honours any of these values as yet, but there is little harm in
becoming the first (both to create-as-an-aggregator, and to honour, this
information)

Improvements I'd like to see, and what they would do.

1. Urchinadm to have richer functionality. It is essential that the administrators can
quickly and easily remove feeds from the both the database of content and the
database of feeds to be polled. Within this project, the two databases are one, so
this complicates things a little (in that you might want to retain old data, but
gather no more), but that's workaroundable. Either way, there must be much finer
control of feed polling.

2. Logging of feed reponses. As an administrator I need to know which feeds are
slow to respond, which are down, which haven't changed in a long time, which
are no longer valid data, which are HTTP 1.0 and not 1.1, and so on. All of these
are signs that I need to manually look at the data I'm fetching. Urchin needs these
logs quite urgently if it is to be used on a bigger scale.

3. Inclusion of other forms of RDF, especially FOAF. Urchin's beautiful RDF
compliant searching would be greatly enhanced by the inclusion of other forms of
RDF. For the scientific publishing world of NPG and JISC, the inclusion of
personal information, such as the FOAF vocabulary, would enable a whole new
form of searching. "Find me all the articles written by people who work with X",
for example, or "Show me every geneticist who has co-authored a paper with
someone who works in biological weaponry". This would be truly great, and quite
easy to do with the existing code base. Talking this over with the developers (and
other developers of other packages), I appreciate there is an issue with trust here.
I'm working on a book about this sort of issue, actually, so start saving your
pennies.) Onward…

4. The following and spidering of rdfs:seeAlso elements within RDF data. This
would greatly aid the administrator, and also encourage publishers to provide
references and semantic links.

Conclusion.

In all, I think Urchin/Rosa is a very good start. To my mind the next thing to do is include
querying on all the RDF data, including namespaces unknown to the system's authors. If
this can be done, and I see no reason why not (given the support of JISC, for example),
then we would have a very interesting product indeed.

Why? Well, I'm undoubtedly preaching to the choir here, but the ability to create and
query chains of metadata triples within published journals would give researchers and
scientists a very powerful tool to keep track of their fields, and other related research.

The main advantage is the ability to chain together queries. For example, a simple text
search system, looking at keywords, can do very little other than Boolean queries:

genetics AND carrots

but with an RDF based system, you can make much more interesting searches:

"genetics AND carrots, published before January 1999, with an author who works in the
UK, and who speaks French."

That sort of search would be tremendously difficult without an Urchin type system. Such
a system would also allow features like:

"Automatically alert me when someone in Belgium publishes a paper on Biological
Weaponry, that cites any paper written by Professor Doom as a resource."

That would be pretty trivial to do, as would:

"Tell me all the people who have co-authored a paper with a Nigerian biologist in the
last year. And then tell me all of their friends who work in Denmark."

Itself a massively complex query without the benefit of RDF triples, but relatively easy
with.

There are problems, of course: the metadata would need to be of a high quality, which is
quite a rare thing on the net. It is not a rare thing, however, in the scientific publishing
field, provided that the publisher knows it is needed. Providing metadata at the point of
authorship is by far the simplest way of doing things. Happily, an application such as
Urchin provides the market impetus to the publishers to make their metadata available,
where there frankly wasn't one before. That the Urchin::Import modules are so good is a
great help here too, as the publishers needn't necessarily migrate to richer systems.
In all, it's a good system, and well worth JISC's support.

Ben Hammersley, Florence, Italy, 9 Oct 2003 - ben@benhammersley.com

